Research Opportunities and Challenges for Achieving Carbon Neutrality in the Global Aluminum Industry

Dr. Subodh Das, CEO & Founder, Phinix, LLC

www.phinix.net

skdas@phinix.net Lexington, KY

17th Annual KY EPSCoR Conference

Aluminum Production Overview

- Bauxite Mining
- Alumina Refining
- Smelting
- Processing
- Recycling

<u>Kentucky Aluminum Production</u>

- Average annual metals job wage is \$52,336
- Aluminum industries employ 15,000 citizens
- \$100 M generated yearly in state & local taxes
- Shipments totaled > \$2.5 billion (Largest in U.S.)
- Total State GDP > \$4 Billion

Deposit Amount and Job Creation

Deposit Refund Amount per Container

U.S. ALUMINUM INDUSTRY TRENDS

- MARKET U.S. remains largest consumer of aluminum products
- cLosed All bauxite mining
- DECLINING 3 alumina refineries operating, 1960s vintage
- CURTAILED Only 8 aluminum smelters operating
 < 4% of world's capacity
 <p>Last new smelter built 1979
 Electricity 60 % of Cost No new smelters will be built in US
- REMAINING Remelting/Casting/Extrusion/Rolling/Recycling

PRIMARY SMELTING PLANTS IN USA

Trends in Aluminium Industry

- •Safety 1950s (Zero Lost Time Accident)
 ✓Industry Standard Now
- •Environmental 1970s (Zero Discharge)
 ✓Industry Standard Now

•Quality – 1980s (Zero Defects)
 ✓Industry Standard Now

•Carbon Neutrality – 2000s (Zero Carbon Impact)

□New Industry Paradigm

Global Metal Carbon Footprint (2008)

Metals	World Production (MMT)	CO _{2eq} (MT/MT)	% Global GHG Emission
Iron & Steel	1,330	1.0	~ 4.4
Aluminium	38	12.7	~ 1.7
Copper	17	5.5	~ 0.3
Zinc	10	3	~ 0.1
Magnesium	1	~ 18	~ 0.06
Titanium	0.1	~ 20	~ 0.007

<u>Carbon Footprint of the</u> <u>Global Aluminium Industry (2008)</u>

Items	Production (MMT)	Unit Emission CO2eq (MT/MT)	Total Emission MT CO _{2eq}	Comments
Smelting	38	10.7	406	World Average
Anode Effect (PFC)	38	2.0	76	0.3 kg/MT GWP = 6,500
Recycling	37	0.5	18	5 % of Primary
Total Emission			<u>500</u>	1.7 % of Global 29,888 MMT co _{2eq}

What is Carbon Neutrality?

- No International Definition
- My Definition:

"Cradle-to-Cradle" Paradigm

$$\sum CO_{2eq} = ZERO$$

- Energy efficiency.

- Recycling, Reduce, Reuse
- Urban Mining

Achieving Carbon Neutrality (MMT CO_{2eq} Per Year)

World Carbon Footprint (2008)	+29,888
Aluminium Carbon Footprint (~1.7% of Global)	+500
Increase Use of "Greener" Sources of Electrical Energy by 8 %	(27)
Reduce Process Energy Requirements by 16% Eliminate Anode Effects/ Process Improvements/ New Technologies	(79)
Deploy 35 % of Products in "In-Use" Energy Savings Applications Transportation & Renewal Energy Sectors	(266)
Divert 6.1 MMT per Year from Incinerators / Landfills	(74)
Recover 4.5 MMT per Year from "Urban Mining"	(54)
Global Carbon Impact	ZERO

CYCLE OF CARBON NEUTRALITY

SUGGESTED RECYCLE-FRIENDLY ALLOYS

Current Number of Alloys: 110 to Possible RFA: 15

Industry/Field	Recycle-Friendly Alloy
Electrical	1350
Can Sheet	One "uni-alloy" 3104 (For body, lids, tabs)
Building and Construction	3105 (painted sheet); 606X (extrusion)
Automotive	5754, 6111-O (interior); 6111-T4 (exterior); 6061-T6 (bumpers/structural); A356, 380, 319
Aerospace	2X24, one 7X50 (plate, extrusion)
Marine	5052 (plate); 6063 (extrusion)
Guide Lines for Material/Metallurgical Engineers & Alloys Designers	Minimize use of Li, Ag, Be, Bi, Pb, Ti, Cr, Zr, V ("Entropy Enhancers/Recyclability Reducers"). Only Need: Cu, Zn, Mg, Mn, Fe and Si

RECYCLING RATES BY MARKET SEGMENT

Sector	Market Share	Use Life Cycle (Y)	Recycling Rate (%)	Recyclability	Opportunities
Transportation Ground	30	8-12	~ 90	High	Multi -Metal Components
Marine	5	10-15	~ 70	Medium	Low Mg
Aerospace	10	20-25	~ 50	Low	Avoid Li 2XXX/7XXX Mix
Building & Construction	20	25-40	~ 80	Medium	Extrusion / Rolled Separation
Packaging LG	10	1-3 (m)	~ 20	Low	Avoid Zn
Packaging Cans	10	1-2 (m)	~ 50	Low	Uni alloy
Electrical / Machinery	10	20-30	~ 40	Medium	Oxidation
Electronics	5	1-3	~ 20	Low	Recycling

Global Aluminum Industry

CARBON NEUTRALITY VOLUNTARY GOALS

Increase recycled aluminum supply by
 1.05 tonnes for 1 tonne of incremental primary production.

2. Develop internationally accepted and approved carbon footprint credit protocols

Aluminum Flow (2009 Billions of Pounds) US and Canada

Finished Product Export 2.8

the process of reclaiming materials from buried trash

Sources: Adams, Nicholas A., and Henry F. Sattlethight. U.S. Aluminum Beverage Can Recycling. 2011. www.aluminum.org; EPA. Number List of Municipal Solid Waste Landfills Sites in the U.S. 1995; Phinix, LLC. http://www.phinix.net/

Graphic prepared for Phinix, LLC by Dana Kampman. All rights reserved

Example of Carbon Management Copenhagen, Denmark Taxi

- Less Idling
- Better Fuel Mix
- Less Dead Weight
- > Less "Scenic" Routes
- Better Driving Habits
- Local Offsets

RESEARCH OPPORTUNITIES

Primary: Game Changing New Technologies

Melting: 25% Efficient, Increase Melting Efficiency

Fabrication: Sustainable/Recyclable Products

Recycling:

Develop Recycle-Friendly Alloys

Sorting Technologies – Minimize Export

<u>Urban Mining:</u> \$80 billion / \$2 billion per year

In-Use Energy Savings Products: Transportation /

Renewal Energy

19