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A B S T R A C T   

The recycling of end-of-life (EoL) electronic products is motivated by the enormous investment of resources in 
their creation and the environmental concerns associated with electronic waste (e-waste). Hydrometallurgical 
methods that utilize conventional leaching and solvent extraction are often applied to extract target materials 
from e-waste; however, these techniques have significant technical and economic limitations when extracting 
high-value, low concentration metals from complex waste streams. This study proposes and evaluates a novel 
process based on gas-assisted microflow extraction (GAME) that efficiently recovers precious metals from waste 
printed circuit boards (WPCBs). An economic analysis is conducted to verify the economic feasibility of the 
GAME-based process at an industrial scale. The economic outputs are further investigated to identify the most 
cost-effective production strategies, particularly with respect to the plant feedstock rate. It is envisioned that this 
study may establish a paradigm for making economically-informed decisions for sustainable technologies.   

1. Introduction 

The rapid technological advancement in computer and information 
industries drives the production of electrical and electronic products, 
but at the same time, also accelerates their obsolescence (Islam and 
Huda, 2019). As a result, the waste from end-of-life (EoL) electronics, i. 
e., e-waste, continues to be one of the fastest growing waste streams 
worldwide (Perkins et al., 2014). On the one side, e-waste inevitably 
imposes environmental threats as it contains hazardous and toxic ma
terials; on the flip side, it also offers a potential secondary source of 
valuable/critical materials for which the primary sources (virgin mate
rials) are subject to substantial supply risks (Dhir et al., 2021). Waste 
printed circuit boards (WPCBs) are identified as the major source of 
recoverable materials from e-waste, as they contain high-value precious 
metals such as gold and silver (Marra et al., 2018). 

E-waste recycling (in some contexts, known as urban mining 
(Nakamura, 2014)) offers a solution to conserve valuable resources from 
used electronics, and concomitantly, to alleviate the environmental 
burden caused by improper EoL management (Ryter et al., 2022; Baxter 
et al., 2016). Currently, hydrometallurgical methods are considered the 

most promising approach for e-waste recycling (Gámez et al., 2019). 
Nevertheless, most conventional hydrometallurgical approaches cannot 
economically extract and recover low-concentration (but high-value) 
materials from complex waste stream at scale, or not even physically 
tenable in practice. Furthermore, there is insufficient research on the 
economic performance of hydrometallurgical approaches used in com
mercial operations (Wilson et al., 2014). 

To economically recover precious metals from e-waste, one prom
ising approach is to employ gas-assisted microflow extraction (GAME) 
(Yu et al., 2010). Compared to conventional solvent extraction ap
proaches (such as bulk solvent extraction), GAME can significantly 
reduce material consumption thus lowering operating expenses. 
Remarkably, GAME can achieve high extraction efficiency when oper
ating under high aqueous to organic ratio (A/O) that is required to 
extract low concentration metals from complex stream, making it 
perfectly suited for recovering precious metals from WPCBs. 

To verify the economic feasibility of GAME in industrial practice, this 
study introduces a holistic GAME-based process workflow that can 
recover precious metals from e-waste with significantly lower chemical 
consumption and higher extraction efficiency. An economic analysis is 
conducted for the GAME-based process to ascertain the optimal 
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industrial operating strategies. The findings of this research could make 
an important contribution to support the sustainable e-waste manage
ment and promote the practices of material recycling. 

The remainder of the paper is structured as follows. First, an over
view of e-waste management and conventional solvent extraction ap
proaches is provided in the Literature Review section. Then, the 
Materials and Methods section introduces the GAME-based process and 
proposes a two-phase methodology for economic analysis. In the Results 
and Discussion section, key economic results are presented and further 
investigated through sensitivity analysis and nonlinear regression. 
Finally, the paper concludes with a summary of research highlights and 
identifies promising areas for future research. 

2. Literature review 

Electronic waste (e-waste), or waste from electronic and electrical 
equipment (WEEE), generally refers to discarded end-of-life (EoL) 
electronic products and components (Mmereki et al., 2016). One char
acteristic that distinguishes e-waste from other waste streams is the 
complex mixture of materials. On the one hand, e-waste contains several 
hazardous elements (such as lead, mercury, and cadmium (Perkins et al., 
2014)) that require special treatment and cannot be directly disposed in 
landfill sites. On the other hand, it also contains valuable metals such as 
gold, silver, palladium, and copper (Islam et al., 2020), presenting 
immense opportunities for value recovery. In 2019, the e-waste gener
ated worldwide reached a record of 53.6 million metric tons, but only 
17.4% was collected and recycled (Forti et al., 2020). The growing 
environmental concerns over the sheer volume of e-waste, along with 
the enormous loss of recoverable material resources, prompt the need 
for effective end-of-life management strategies specifically optimized for 
e-waste, so as to combat improper practices such as hazardous land
filling or household stockpiling (Patil and Ramakrishna, 2020). 

Perhaps the most essential and iconic component of electronics is the 
printed circuit board (PCB), as it provides the electrical interconnections 
between components and is found in almost all electronics products 
(LaDou, 2006). While waste printed circuit boards (WPCBs) constitute 
only about 3 – 6  wt percentage of the total e-waste (Wang et al., 2020), 
they represent the most valuable part of e-waste accounting for over 
40% of the total e-waste metal value (Kumar et al., 2017). In fact, the 
concentration of precious metals (especially gold and palladium) in 
PCBs can be several orders of magnitude above conventional ore de
posits (Balde et al., 2017). During disposal, WPCBs are typically 
dismantled from common used electronics, such as mobile phones, 
computers, and hard disk drives (HDDs) (Cong et al., 2017), creating a 
pre-concentrated waste stream suitable for resource recovery. 

Over the past decades, there has been an increasing interest in 
recycling materials from WPCBs, although large-scale economically 
successful recycling has yet to be achieved. It is envisaged that value 
recovery from WPCBs would become an integral part of an e-waste 
management strategy, and the lucrative economic opportunities from it 
could eventually foster a sustainable circular economy for electronics 
sector in the aggregate (Kazancoglu et al., 2022). Apart from economic 
factors, metal recovery from secondary feedstocks, such as WPCBs, 
generally entail significant reductions in embodied energy and CO2 
emissions relative to virgin materials production, which provide further 
environmental and societal benefit. 

The metals in PCBs consists mainly of common base metals (e.g., 
copper, lead, aluminum, and tin), as well as other heavy metals such as 
cadmium and nickel (Bizzo et al., 2014). However, the primary source of 
recoverable value from WPCBs resides in high-value precious metals, 
especially gold and silver (prices ranging from $54,514.97/kg – $65, 
714.28/kg and $592.22/kg – $866.13/kg in 2022, respectively), even 
though they only make up 1% of PCB by weight (Awasthi et al., 2017). 
Additionally, the lower-value base metals with high-concentration (such 
as copper that constitutes 10–20% of PCB by weight and can be sold at a 
price of $7.05/kg – $10.73/kg in 2022) can also be co-extracted (Ghosh 
et al., 2015) to augment the total value available for recovery. Hydro
metallurgical methods, which use chemical reagents in the aqueous 
phase to solubilize metals, have been the most active research area for 
metal recovery from WPCBs (or in a more general sense, e-waste) over 
the past two decades (Sivakumar et al., 2018). Compared to pyromet
allurgical approaches, a hydrometallurgical route enables the selective 
recovery of individual metals (in this case, the precious metals), offers 
high controllability, and yields less hazardous emissions (Ghosh et al., 
2015; Rocchetti et al., 2018). 

In a conventional hydrometallurgical process flow for e-waste recy
cling, the feed material is first prepared using physical-mechanical 
treatments (e.g., crushing, shearing, and grinding) to produce a uni
formly sized product. The metals are then dissolved through leaching 
with different lixiviants, sometimes at elevated temperatures or in the 
presence of various chemical additives (Rocchetti et al., 2018). To 
facilitate selective and efficient recovery of precious metals from 
WPCBs, the leaching process must be tuned to maximize the dissolution 
of target elements (e.g., Au and Ag), while minimizing the contamina
tion from copper and other base metals. Once the leaching is complete, 
the pregnant leaching solution (PLS) is directed to downstream sepa
ration, purification, and recovery processes, with a common approach 
using solvent extraction, stripping, and precipitation (Correa et al., 
2018). These sequential process steps can facilitate the production of 
high-purity Au and Ag metals, and the details will be discussed in the 
Materials and Methods. 

The most widely used separation and purification process in 
extractive metallurgy is bulk solvent extraction (BSX) (Kolar et al., 
2016). Here, the aqueous leaching solution is vigorously mixed with an 
organic solvent, which is doped with a carefully-selected ligand that 
facilitates the selective recovery of valuable elements into the solvent. 
Industrially, BSX is applied in large continuous mixer-settler reactors 
with numerous countercurrent stages that are required for selective re
covery. Despite its widespread utility in the minerals industry, BSX tends 
to be ineffective or even unviable for the selective recovery of 
low-concentration precious metals (e.g., Au and Ag) from the complex 
leaching solutions of WPCBs. This is the case because solvent extraction 
requires adequate mixing between the organic extractants and aqueous 
leaching solution (Rydberg, 2004). Due to the extremely dilute con
centration of Au and Ag, BSX needs a long period of time to build up 
their concentration in the organic phase. This inevitably results in high 
consumption of chemicals and energy. 

This long loading time for the organic phase to reach critical satu
ration values can be shortened by applying a high aqueous-to-organic 
phase (A/O) ratio. But for the case of BSX, a high A/O ratio would 
severely compromise the extraction efficiency (i.e., the percentage of 

Nomenclature 

EoL End-of-life 
WPCB Waste printed circuit board 
GAME Gas-assisted microflow extraction 
BSX Bulk solvent extraction 
TEA Techno-economic assessment 
A/O Aqueous-to-organic 
KPI Key performance indicator 
AVC Average variable cost 
ATC Average total cost 
OPEX Annual operating expenses 
CAPEX Total capital investment 
NOI Annual net operating income 
NCF Net cash flow 
IRR Internal rate of return 
X Weight of WPCBs processed per year  
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target metals recovered) (El-Ashtoukhy and Fouad, 2015). An alterna
tive to BSX is liquid-liquid two-phase microflow extraction (LLME) 
(Wang and Luo, 2017), which uses well-defined microchannels that 
provide a large specific interfacial area and a short diffusion length for 
the solutions. As a result, LLME can achieve a mass-transfer rate that is 
several orders-of-magnitude higher than BSX and thus can significantly 
reduce the loading time (Wang and Luo, 2017). Nevertheless, once the 
dimension of the microchannels is fixed, higher A/O ratio will increase 
the mass transfer distance and reduce the extraction efficiency (Wang 
et al., 2014). Consequently, although LLME methods do manage to 
preserve a reasonable extraction efficiency under moderately high A/O 
ratio, its performance could still be impaired when the A/O ratio is 
extremely high (Vural Gürsel et al., 2016). 

To overcome this obstacle, one promising solution is to introduce a 
gas phase into the LLME system, i.e., establish a system based on gas- 
assisted microflow extraction (GAME), which has already demon
strated its potential in the recovery of metals (e.g., rare earths) from 
waste streams (Chen et al., 2018). The principle is to profusely generate 
uniformed micro gas (e.g., nitrogen) bubbles into the aqueous leaching 
solution, with the organic extractant molecules coated on the surface 
(Tan et al., 2011). Employing gas/liquid/liquid flows in the micro
channels can significantly elevate the mass-transfer rate and extraction 
efficiency while preserving a high A/O ratio (Chen et al., 2017). 
Therefore, GAME is inherently geared towards recovering 
low-concentration target metals from a complex waste stream. The 
various advantages of GAME in extraction performance over conven
tional approaches can be highlighted through a qualitative comparison 
as shown in Table 1. 

Even though GAME has been extensively applied in a diverse range 
of industries, such as foods, pharmacy, and functional material synthesis 
(Chen et al., 2018; Cents et al., 2001), and notably in the case of 
recovering rare earths from waste water (Chen et al., 2017), very limited 
research is available on its applications for the purification and sepa
ration of individual metals from a complex e-waste stream. In an attempt 
to address this need, the Virginia Tech authors have designed and 
optimized a prototype GAME-based process that can selectively extract 
high-purity precious metals from WPCBs. The complete process flow 
comprises physical pretreatment, an upstream leaching module, and a 
downstream purification module, which will be discussed in the Mate
rials and Methods. 

Although the technical viability of the proposed GAME-based pro
cess (including stability and repeatability) has been verified through 
rigorous experimental testing, its actual industrial implementation 
hinges on the economic feasibility when operated at a production scale 
(Moni et al., 2020). This evaluation is best defined though an economic 
concept of paramount importance: the economy of scale, which refers to 
the decrease in production cost per unit of output as the production scale 
increases (Antonio, 1979). In the context of circular economy and value 
recovery, economy of scale directly links to the volume of available 
waste feedstock (Kębłowski et al., 2020). In view of this, the amount of 
WPCBs that can be collected and processed would be a determining 
factor to the production efficiency of the industrial facility equipped 

with the new GAME-based process. 
To advance the technology readiness level (TRL) of the pioneering 

GAME-based approach for value recovery from e-waste, quantitative 
analyses with reliable data are essential to create a more comprehensive 
appraisal of the projected economic performance and impact (Acerbi 
et al., 2021), thus providing valuable decision-making guidelines in 
scaling up the production rate to achieve an attractive economy of scale. 
More specifically, it is crucial to determine whether the value recovered 
from target metals is adequate to overcome all the costs in processing 
high volumes of WPCBs, including material and utility consumption, 
capital investment, operating labor (Gigli et al., 2019), and additional 
indirect and administrative expenses (Rizos et al., 2016). 

This prompts the need to establish a mathematical model based upon 
the design of the GAME process to predict its economic feasibility at an 
industrial scale. In accordance with the standard procedure for project 
development in the chemical industry (Buchner et al., 2018), an apt 
strategy for this investigation is to conduct a techno-economic assess
ment (TEA). Through production cost-benefit modeling and financial 
analysis (Lauer, 2008), TEAs are extensively employed to evaluate the 
economic prospects of a concept, system or technology (Tech
no-economic assessment, 2022). TEAs not only evaluate economic 
feasibility by estimating key performance indicators (KPIs) (Schnuelle 
et al., 2020), but can also be integrated with analytical tools (such as 
sensitivity analysis and statistical methods) to explore technological 
improvement opportunities (Deng et al., 2020). In the present work, 
attention will largely be devoted to just the economic portion of TEA. 

As the scope of inquiry may vary, there is no universal standard 
platform or procedure for conducting TEAs (Cortes-Peña et al., 2020). 
Numerous studies have been carried out to conduct TEAs on value re
covery from e-waste (e.g., Diaz et al., (2020); Nguyen et al. (2017); 
Ghodrat et al. (2016) and Khan et al. (2016)), each featuring a unique 
TEA model tailored to a specific scenario. Based on a general economic 
model for process engineering proposed by Silla, 2003 and following the 
TEA guidelines provided by (US Energy Information Administration 
(EIA), 2015), researchers at Purdue have developed a general TEA 
model that can adapt to a wide range of technical domains. By applying 
this TEA model, the economic performance of numerous value recovery 
approaches has been investigated, especially in the field of e-waste 
management (e.g., Frost et al. (2020) and Deng et al. (2021)). 

Compared to the TEA tools in previous studies, Purdue’s TEA model 
has several notable features. First, it starts with a preliminary cost- 
benefit analysis that provides simplified KPIs to quickly identify sys
tem bottlenecks before getting into more complicated long-term finan
cial analysis (Deng et al., 2020). Second, this computational model can 
accommodate special cost or revenue components with a customized 
calculation mechanism to address particular processes (Chowdhury 
et al., 2021). Furthermore, unlike most other TEAs that generally rely on 
Microsoft Excel®, the TEA model in this study has been implemented via 
a graphical-based software tool (Deng et al., 2021) that streamlines the 
procedure of conducting TEAs. The next section will elaborate on how to 
apply Purdue’s TEA model in the evaluation of the economic perfor
mance of precious metal recovery using the GAME-based process 
developed by Virginia Tech. 

3. Materials and methods 

3.1. GAME-based precious metal recovery process 

The GAME-based process developed by Virginia Tech primarily 
consists of a leaching module and a purification module. The pre-treated 
WPCBs will be fed into the leaching module to generate Au-Ag loaded 
PLS, which will go through the GAME-based purification module to 
extract high-purity Au and Ag metals. In addition, Cu metal will be 
recovered as a byproduct considering its high-concentration in WPCBs. 
A complete process flow diagram is illustrated in Fig. 1. 

The WPCB feedstock may be sourced from a multitude of EoL 

Table 1 
Extraction performance comparison among BSX, LLME, and GAME.  

Category BSX LLME GAME 

Mass transfer rate (Wang and Luo, 2017) Low High Very 
high 

Loading time (Kolar et al., 2016) Long Short Very 
short 

Volumetric throughputs (Kumar et al., 2012) Low High Very 
high 

Extraction efficiency under moderately high A/O (e. 
g., 10/1) (Vural Gürsel et al., 2016) 

Low High High 

Extraction efficiency under extremely high A/O (e.g., 
100/1) (Wang et al., 2014) 

Low Low High  
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electronic devices (e.g., mobile phones, computers, and televisions), 
which can be collected from e-waste recycling facilities. During the 
laboratory procedure, WPCB pieces (from laptop and desktop circuits) 
were first placed in crucibles and combusted in a muffle furnace at 
800 ◦C. The purpose of combustion is to burn out non-metal materials (e. 
g., plastics) and thus separate them from metals. It is assumed that there 
is no loss of target output metals (i.e., Au, Ag and Cu) since their melting 
points are higher than the combustion temperature. The residue was 
then screened and collected as feed used in the subsequent leaching 
processes. There are two sequential leaching stages. Most of the copper, 
as well as other base metals, are dissolved at the first leaching stage 
using diluted hydrochloric acid, and the raffinate from the 1st leaching 
stage is sent to electrowinning for copper recovery. Almost no Au and Ag 
are dissolved during the 1st leaching stage; the solid residual is then fed 
into the second leaching stage and dissolved by thiourea (Akcil et al., 
2015). After the 2nd leaching, almost all Au and Ag are leached out into 
the PLS and is ready for GAME-based purification, which consists of 
solvent extraction, stripping, and precipitation. 

For the GAME-based purification module, Au-Ag loaded PLS, kero
sene, and nitrogen are used as aqueous, organic, and gas phases 
respectively, while tributyl phosphate (TBP) and Di-(2-ethylhexyl) 
phosphoric acid (D2EHPA) are used as extractants (diluted in kerosene). 
Through solvent extraction, Au and Ag are separated from contaminants 
and concentrated into the loaded organic phase. Next, thiourea (dis
solved in hydrochloric acid solution) was used again to strip Au and Ag 
from the organic phase to a highly-concentrated aqueous phase (Awa
dalla and Ritcey, 1991). Lastly, sodium borohydride (NaBH4, dissolved 
in sodium hydroxide solution) was slowly added to the stripping solu
tion to precipitate Au and Ag as particles. To obtain high-purity metals 
that can be sold to the market, these precipitates were then collected 
through filtration (Behnamfard et al., 2013) and were washed with 
distilled water and acetone, followed by vacuum drying (Hohnstedt 
et al., 1965). More detailed information regarding the GAME-based 
process design and relevant chemical procedures/reactions can be 

found in the Supporting Information (SI). 

3.2. Economic analysis methodology 

The primary objective of this study is to conduct an economic anal
ysis for the operation of a WPCB processing facility (referred to as 
“GAME facility”) that deploys the process design as depicted in Fig. 1 
and described above. The proposed economic analysis methodology 
consists of two phases: a process economic assessment (Phase I) and an 
improvement opportunity analysis (Phase II). While a TEA model/soft
ware will be used to perform these tasks, as noted previously, our 
emphasis is largely limited to the economic aspects of the GAME-based 
process. 

Phase I aims to evaluate economic feasibility of the process under 
study at an industrial level using a set of predetermined assumptions. It 
starts with collecting and synthesizing the pertinent process information 
that serves as inputs for the existing TEA model (to be discussed in 
Section 3.3), including lab-scale or experimental data of the GAME- 
based process (summarized in Section 3.4), and results from prior 
studies (e.g., cost estimation models for electrowinning (Kordosky and 
Dorlac, 1986)). Next, a software tool (see Section 3.5) is used to calcu
late/estimate the industrial-scale mass balance and generate economic 
results for a baseline scenario (to be discussed in Section 4.1.1). 
Furthermore, to compare the economic performance of the GAME-based 
process with conventional approaches, a comparative analysis will be 
conducted (results are discussed in Section 4.1.2). 

Phase II aims to expand upon the economic results generated from 
Phase I to identify improvement opportunities in process design and 
operating settings, and the variables of interest may vary from case to 
case. As explained in the Literature Review, the economic feasibility of 
the GAME facility depends on the production scale. In view of this, in 
this study a sensitivity analysis will be conducted to investigate the 
impact of the annual feedstock rate on relevant economic performance 
metrics. Based on the theoretical data generated through a sensitivity 

Fig. 1. GAME-based process flow for Au and Ag recovery from WPCBs.  
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analysis (i.e., the economic results under different production scales), 
statistical learning tools will be applied to provide more insights into 
how to leverage the economies of scale. The detailed results and dis
cussion of Phase II will be presented in Section 4.2. 

The GAME-based process in this work serves as a case study to 
demonstrate the complete workflow of using the two-phase methodol
ogy to provide economically-informed insights for decision making in 
technology development. However, the application of the two-phase 
methodology is not limited to the GAME-based process and WPCB 
recycling. The underlying cost-benefit modeling (in Phase I) can be 
tailored to any specific process flows; the scope of the sensitivity analysis 
(in Phase II) can be narrowed down to any subset of internal factors (e.g., 
process design variables) and external factors (e.g., logistics costs). For 
the preceding reasons, the two-phase economic analysis methodology 
proposed in this study is adoptable to the economic assessment and 
analysis of a diverse range of technologies. 

3.3. TEA model 

The Purdue’s TEA model consists of two parts: a preliminary cost- 
benefit analysis and a comprehensive financial analysis. The pre
liminary cost-benefit analysis aims to model the total production cost (C) 
and revenue (R) on an annual basis. For the case of the GAME facility, let 
the annual production amounts (in mt) of Au, Ag, and Cu be denoted as 
Q1, Q2, Q3, and their market prices per mt be denoted as P1, P2, P3. 
Accordingly, the structure of the preliminary cost-revenue model is 
outlined in Fig. 2. 

The exact mathematical model that underpins Fig. 2 is explained in 
the SI. To summarize the salient points, the annual production cost (C) 
consists of four components that are interlinked. The direct cost is 
considered as a variable cost since it directly depends on the mass bal
ance flow during the operation, whereas the other three components 
collectively constitute the fixed costs that are necessary to establish the 
facility. In summary, the calculation of the annual net profit (P) can be 
expressed in Eq. (1). 

P = R − C =
∑3

i=3
Ri − C =

∑3

i=3
PiQi − (CD +Cc +CI +CG). (1) 

Based upon the results from the preliminary cost-benefit analysis, the 
comprehensive financial analysis is conducted by considering economic 
factors such as interest rate, depreciation, and inflation (see SI for de
tails). The main goal is to generate a net cash flow (NCF) plot that il
lustrates inflow and outflow of funds of each year throughout the 
facility’s lifespan. Based on the NCF, certain KPIs that factor in the time 
value of money will be calculated, such as net present value (NPV) and 

internal rate of return (IRR), which will be explained in the Results and 
Discussion. 

3.4. Data collection 

The primary mass balance of the GAME-based process consists of the 
material consumption in leaching and purification modules and the 
amount of target metals (Au, Ag, Cu) produced. The lab-scale data for 
processing 2.66 kg of WPCBs are calculated based on experimental data 
curated by Virginia Tech and relevant reaction stoichiometry (provided 
in SI). Other materials consumed, such as the anode used in electro
winning, as well as nonreactive substances (deionized water and nitro
gen), are estimated through empirical models from literature (Kordosky 
and Dorlac, 1986; Free, 2014) and are excluded from the primary mass 
balance. The purchasing prices of input materials (industrial grade) and 
the selling prices of output metals (commercial grade) were procured 
from multiple credible online databases (e.g., Argus, LME, Trading 
Economics, MineralPrices.com) or merchant invoices, and the relevant 
sources are provided in the SI. Table 2 provides a summary of the 
lab-scale data and price assumptions. 

Fig. 2. Production cost-revenue model.  

Table 2 
Primary mass balance (lab-scale) and price assumptions.  

Major inputs for processing 2.66 kg WPCBs 
Material Name Lab-scale net 

consumption 
Industrial grade price (unit 
cost) 

HCl (converted to 0.75 mol/ 
L) 

24.39L $14.35/m3 

Thiourea 109.16 g $6600/mt 
D2EHPA 1.46 g $2200/mt 
NaOH 33.74 g $330/mt 
NaBH4 61.22 g $30,000/mt 
TBP 1.2 g $1870/mt 
Kerosene 3.62 L (can be 

reused) 
$1000/m3 

Outputs from processing 
2.66 kg WPCBs   

Product name Lab-scale yield Commercial grade price 
(unit revenue)* 

Au metal 1.015 g P1 = $56,916.73/kg 
Ag metal 4.071 g P2 = $718.93/kg 
Cu metal 814.94 g P3 = $9.46/kg  

* The prices of Au, Ag, Cu are based on the data in December 2021, and each of 
them falls into the corresponding price range in 2022 as discussed in the Liter
ature Review. 
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3.5. TEA software 

In this work, the economic analysis is conducted with the aid of the 
LSM TEA Full® software tool (Deng et al., 2021), which was developed 
based on the TEA model discussed in Section 3.3. This Python-based 
software features a user-friendly graphical interface that can effec
tively collect process information thus streamlining the procedures for 
conducting TEAs. Accordingly, the process flow diagram of the 
GAME-based process (illustrated in Fig. 1) is recreated by connecting 
customizable block objects on a canvas. The screenshots of the software 
interface when analyzing the GAME-based process, as well as a brief 
overview of the software are included in the SI. 

The essential data to initiate the economic assessment/analysis – 
including lab-scale material and energy consumption and equipment 
configurations – are imported into the software by setting up either the 
global variables that influence the whole system or the parameters of 
each individual process blocks. Based on the data input through the 
frontend interface, the software converts the lab-scale mass balance 
(discussed in Section 3.4) into an industrial-scale mass flow at the 
backend, generates economic metrics (e.g., cost and revenue break
downs, KPIs), and then presents the results in Microsoft Excel® 
spreadsheets. In addition, the software can run multiple scenarios during 
a single session, which enables the comparison of the economic per
formance under different operating strategies. 

4. Results and discussion 

4.1. Process economic assessment 

4.1.1. Baseline scenario 
The GAME facility is assumed to have a 20-year lifespan and operate 

260 days per year. According to a report on Indiana’s e-waste recycling, 
the average mass of e-waste processed by a typical recycling facility is 
around 500 mt/year (Indiana Department of Environmental Manage
ment, 2020). Alternatively, a previous study on HDD dismantling (Cong 
et al., 2017) as well as private communications between the authors and 
several data destruction companies indicate that an approximate pro
portion of WPCBs in e-waste is 5%. Therefore, a relatively conservative 
estimate for the annual amount of WPCBs processed at a single facility 
would be 25 mt/year. For a baseline scenario with a feedstock rate of 25 
mt/year, a TEA was performed using the software discussed in Section 
3.4, and the detailed assumptions and outputs are included in the SI. 

First, as a quick overview of the preliminary cost-benefit analysis on 
an annual basis, the breakdowns of annual production cost (C) and 
revenue (R) are shown in Fig. 3. The pie chart on the left shows that the 
direct cost (variable cost) is expected to constitute more than half of the 
annual production cost, indicating that a change in production target 

will tend to greatly influence the overall plant expenditures. It should be 
noted that the CAPEX in Fig. 3 is an annualized value that is calculated 
by dividing the estimated total CAPEX (to be discussed) by the plant life 
(T = 20 years). As the annualized CAPEX accounts for less than 5% of the 
annual production cost, it can be concluded that the required initial 
capital investment is not a significant cost driver for the process. 

In Fig. 3, according to the bar chart of revenue breakdown, it is 
evident that the gold metal is the predominant source of revenue, even 
though its concentration in WPCB is extremely low. In contrast, even 
though the copper makes up around 30 wt% of the WPCBs according to 
the experimental data, its contribution to the total revenue is a full 
order-of-magnitude less than that of gold. Nevertheless, comparing the 
numbers in both charts in Fig. 3, the extra income from the copper as a 
byproduct still covers a substantial proportion of the production costs, 
showing its vital role in enhancing the economic competitiveness of the 
GAME facility. As a high-level summary of the economic performance 
under the baseline scenario, the results of certain KPIs (along with their 
definitions) are presented in Table 3, which indicate an overall prom
ising economic performance of the GAME-based process when process
ing 25 mt WPCBs per year. 

4.1.2. Comparative analysis 
Although uncertainties inevitably exist in the economic results as 

numerous assumptions and estimations were made, the TEA model still 
offers an platform to compare the process under study with established/ 
competing technologies under consistent assumptions (Diaz and Lister, 

Fig. 3. Breakdowns of annual production cost (C) and annual revenue (R).  

Table 3 
Selected KPIs for economic performance under the baseline scenario.  

KPI Value Definition and Explanation 

OPEX $361,061/ 
year 

Annual operating expenses, C − Cc − Cf 

CAPEX $345,130 Total capital investment, CCT 
Average variable 

cost (AVC) 
$27.0/kg Variable cost per unit of output, CD/

∑3
i=3Qi 

Average total cost 
(ATC) 

$49.2/kg Total cost per unit of output, (OPEX ∗T +

CAPEX)/
∑3

i=3QiT 
Unit revenue $83.4/kg Revenue per unit of output, R/

∑3
i=3Qi 

Annual profit (P) $235,886/ 
year 

The annual net profit before tax, P = R − C 

Break-even point 
(BEP) 

11.4 mt/year Minimum WPCBs need to be processed to 
cover the fixed cost 

Net present value 
(NPV) 

$1,654,094 The present value of net cash flows (NCF) 
over the plant life 

Payback period 2 years The time it takes to recover the cost of the 
initial investment 

Internal rate of 
return (IRR) 

88.8% The discount rate at which the benefit is 
equivalent to the cost  
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2018). To demonstrate the economic advantage of GAME compared to 
conventional BSX approaches, it is crucial to conduct a comparative 
analysis through the lens of the same TEA model. Accordingly, two 
comparative scenarios were designed where BSX replaces GAME in the 
solvent extraction step. The economic results of these two BSX-based 
scenarios are then compared to the GAME-based baseline scenario. 

The first scenario (BSX1) keeps the same level of A/O ratio as in the 
baseline (10/1), which does not change the usage of materials during 
purification but results in a much lower extraction efficiency (i.e., the 
percentage of Au and Ag recovered) that is estimated to be 20% 
(El-Ashtoukhy and Fouad, 2015; Vural Gürsel et al., 2016). The second 
scenario (BSX2) applies a much lower A/O ratio (1/2), which directly 
results in significantly higher consumption of materials during purifi
cation, but under such a low A/O ratio, the BSX can be assumed to 
achieve the same extraction efficiency as GAME. The mass balances in 
the two comparative scenarios were based on experimental data from 
Virginia Tech, and all other assumptions (e.g., annual feedstock rate X 
and plant life T) stay the same. After inputting relevant data into the 
software, the economic results for the two BSX scenarios are generated. 
The economic performance of the three scenarios can be compared 
through Table 4, and more detailed explanation may be found in SI. 

As is evident from Table 4, both comparative scenarios (BSX1 and 
BSX2) are estimated to have negative annual profit and NPV, indicating 
they tend to be economically infeasible in industrial practice. For BSX1, 
the low extraction efficiency of Au and Ag leads to a significantly lower 
income from selling the products (reflected in lower unit and annual 
revenues), which is far from enough to cover the production cost. BSX2, 
on the other hand, is able to yield the same amount of precious metals as 
in the baseline, but at a substantially higher cost (reflected in higher 
AVC, ATC, and C compared to the baseline). Through the comparative 
analysis, it has been numerically justified that GAME indeed has a great 
economic advantage over conventional BSX approaches in extracting 
low-concentration precious metals from complex e-waste stream, since a 
high A/O ratio proves to be a necessary condition for both technical 
viability and economic feasibility. 

4.2. Improvement opportunity analysis 

As discussed in the Literature Review, economies of scale play a 
decisive role in determining to the economic feasibility of the proposed 
GAME-based process. Although economies of scale are typically 
measured by the amount of output produced, for the cases of circular 
economy or waste management, it is more applicable to monitor the 
amount of waste feedstock processed, which is (in most cases) linearly 
correlated to the production volume. 

In Table 3, it is noticeable that for the baseline scenario the unit 

revenue is significantly higher than the unit cost (or ATC). This result 
shows that the substantial economic potential can be leveraged by 
increasing the target amount of WPCBs processed per year (denoted as 
X, with the baseline scenario value being X0 = 25 mt). Higher X can lead 
to significantly lower unit cost (either AVC or ATC), even though 
increasing the scale of production may require extra workforce and 
capital investment. Nevertheless, exceedingly high X could also result in 
a “diseconomy of scale.” For instance, in order to achieve a high pro
cessing volume, the facility may need to transport e-waste from distant 
sources, which could result in exceedingly high logistical costs. In 
summary, it is vital to select the optimal X to exploit the full economic 
potential of the GAME-based process. 

4.2.1. Sensitivity analysis 
This section will examine the impacts of X (ranging from 15 to 700 

mt) on some critical KPIs generated from TEA, with the results illus
trated in Figs. 4, 5, and Table 5. First, regarding the average cost in Fig. 4 
(a), it is noticeable that both AVC and ATC (defined in Table 3) display a 
periodic sawtooth pattern. This behavior is because in the proposed TEA 
model, some cost-driven intermediate variables (e.g., number of oper
ators or pieces of equipment) are formulated as step functions of X and 
will increase to the next incremental level once X reaches a set threshold. 
Despite the wide fluctuation when X is low, both graphs overall 
demonstrate a rapidly decreasing trend, indicating the significant cost 
advantages gained from scaling up the amount of WPCB feedstock. As X 
continues to increase, AVC hits its lowest value at $23.4/kg when X 
reaches 105 mt (X1), whereas ATC hits its lowest value at $42.9/kg when 
X reaches 165 mt (X2). Further increasing X beyond these optimal levels 
will not lead to further reduction in average costs; in fact, the average 
cost slightly trends upward in both plots as X becomes larger, owing to 
increasingly larger logistical and managerial costs. 

To get a better quantitative understanding of the economies of scale, 
it would also be beneficial to investigate the CAPEX (defined in Table 3) 
and annual net operating income (NOI, calculated as R – OPEX) under 
different X values. The ratio between NOI and CAPEX is commonly 
known as the cash-on-cash return (CoC) in financial analysis, which is 
used to evaluate how efficiently the operation of the facility can cover 
the initial investment. It can be observed from Fig. 4(b) that the CoC is 
below 1 under the baseline scenario, since CAPEX is slightly above NOI. 
However, as X increases, NOI begins to surpass CAPEX. This means that 
enough revenue is generated in one year, in principle, to cover the entire 
capital investment. From this perspective, moving from the baseline 
scenario (X0) to say, a processing rate of X1 or X2 produces a CoC greater 
than one (the benefit outweighs the extra cost). The long-term economic 
performance of the GAME facility under different feedstock amounts can 
be demonstrated by comparing NCF and IRR as shown in Fig. 5. 

The NCF at the three levels of X (X0, X1, X2) are graphically presented 
by the height of bars in corresponding color. As is evident from Fig. 5, 
the economic improvement from increasing the production scale is 
significant, and one may conclude that the annual feedstock rate should 
be set at 165 mt to achieve minimal production cost per unit product. 
Nevertheless, it should also be noted that there is little improvement in 
IRR from X1 to X2. In fact, the IRR curve tends to flatten out as X becomes 
increasingly larger. As IRR can be interpreted as the annual rate of 
growth that an investment is expected to generate, it is the dominant 
benchmark in comparing different operating scenarios (Patrick and 
French, 2016). In view of this, if the investment budget is somewhat 
limited, processing 105 mt WPCBs per year is the most advisable. An 
overall comparison of the economic performance between the three 
scenarios is given in Table 5. 

4.2.2. Implementing regression splines 
As explained above, the AVC/ATC plots show as a jagged zigzag 

pattern since some TEA elements are modeled as step functions of X. 
However, this simplified modeling approach may not be sufficiently 
flexible to characterize real industrial practice, where managers are 

Table 4 
Economic performance comparison between GAME and BSX cases.  

Configurations and selected 
KPIs 

Baseline BSX1 BSX2 

Solvent extraction 
mechanism 

GAME BSX BSX 

A/O ratio 10/1 10/1 1/2 
Extraction efficiency 100% 20% 100% 
WPCB processed (X) X0 = 25 mt/ 

year 
X0 = 25 mt/ 
year 

X0 = 25 mt/ 
year 

Average variable cost 
(AVC) 

$27.0/kg $27.2/kg $50.41/kg 

Average total cost (ATC) $49.2/kg $49.4/kg $82.7/kg 
Unit revenue $83.4/kg $24.3/kg $83.4/kg 
Annual total production 

cost (C) 
$405,928/year $405,928/year $694,306/ 

year 
Annual revenue (R) $641,814/year $186,212/year $641,814/ 

year 
Annual profit (P) $235,886/year -$219,716/ 

year 
-$52,496/year 

Net present value (NPV) $1,654,094 -$2,217,428 -$409,570  
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unlikely to make dramatic changes to workforce or capital outlays only 
to meet a marginal increase in a processing target. Practically, what is 
more expressive than the AVC/ATC data themselves are the underlying 
trends and patterns, which can be extrapolated through statistical 
learning. 

To gain statistical insights into the AVC/ATC data as shown in Fig. 4, 
it might be tempting to fit one single high-degree polynomial over the 
entire range of X. However, doing so tends to impose a global structure 
on the whole dataset, which is particularly undesirable considering that 
the variability and trend of average costs are evolving as X increases. 
One solution to remedy this problem is to extend the standard poly
nomial regression to piecewise polynomial regression, which divides a 
dataset into different regions (bins) and fits low degree polynomial 
functions on each of these subsets (James et al., 2013). The collection of 
returned polynomials in all subsets is called a regression spline. 
Compared to single polynomial curves, regression splines are more 
flexible and well suited to capture the sectional structure and evolving 

pattern of the data. 
In a regression spline, the points where the division occurs are called 

“knots,” which intuitively present the internal boundaries within the 
dataset where the trend and pattern are expected to alter. For AVC or 
ATC data, there are two boundaries (knots) of interest. The first one is 
the point where the decreasing rates start to slow down, as the benefit 
from increasing production scale starts to saturate when X reaches a 
certain level. The second boundary is positioned near where an upward 
trend starts to appear, as the diseconomy of scale becomes discernible. 

An algorithm has been developed to search for the optimal locations 
to place the two knots. The principle of this approach is to minimize the 
root mean square error (RMSE) of the regression splines, and the related 
pseudocode is summarized in the SI. As a result, Xlow = 30 and Xhigh =

147 are chosen as the optimal knots to segregate both AVC and ATC data 
into three subsets, each representing a unique data pattern. The fitted 
cubic splines with the optimal selection of knots are illustrated in Fig. 6, 
which are superimposed on the original data (presented by small dots). 

Fig. 4. (a) average costs (b) CAPEX & NOI vs. annual feedstock amount (X).  
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As observed from Fig. 6, the regression splines successfully capture 
the sectional patterns of data, which are consistent with the analyses in 
4.2.1. The range between the left knot to the right knot (30 mt/year 
–147 mt/year) can be interpreted as an “efficient processing interval.” 
An annual processing amount below 30 mt should be avoided as the 
production scale may not be sufficient to capitalize on the investment for 
the basic infrastructure of the facility. Moreover, if existing feedstock 
target falls inside the efficient processing interval, the facility could raise 
the processing amount up to around 147 mt to enhance the production 
efficiency. Although large-scale production is generally feasible, it also 
requires enormous investment and could potentially involve high risks. 
Therefore, if the budget is limited, from a conservative standpoint, tar
geting a processing amount of more than 147 mt per year is not 

recommended. 

4.3. Industrial and managerial implications 

In Section 4.2.1, it was noted that the minimum average variable cost 
is achieved for a WPCB processing rate of X1 = 105 mt/year. This rate 
falls within the “efficient processing interval” obtained from Section 
4.2.2. Nevertheless, when the processing target increases to X2 = 165 
mt/year (to minimize the average total cost rather than the average 
variable cost), the actual change in the ATC/AVC and IRR from X1 is 
fairly small. The very modest cost advantages gained by moving from X1 
to X2 (which represent nearly 50% increase in processing rate) are likely 
outweighed by the additional pressures and uncertainties in marketing, 

Fig. 5. Long-term economic performance comparison.  
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financing, and employee supervision. With this in mind, the authors 
would recommend a processing target of 105 mt/year. 

Besides, the planning of the actual industrial deployment of the 
GAME facility could be confounded by other factors, which necessitates 
further investigations into relevant KPIs or even specific cost compo
nents (outlined in Fig. 2). Such factors can be involved in facility con
struction, supply chain stability (e.g., the amount of WPCBs collected 
may be insufficient to meet the processing target), logistic difficulties, 
and regulations. For example, in order to establish the facility, aside 
from lowering production cost per unit product, it is also crucial to select 
a processing rate (i.e., a value of X) with a CAPEX (illustrated in Fig. 4) 
that is less than the budget for capital investment. However, if the 
operation of the facility has proved to be lucrative, it is generally advised 
to further expand the production target to achieve higher annual net 
income (as shown in the NCF in Fig. 5) by making further investment in 
hardware and expanding labor force. In any case, it is always imperative 
to periodically monitor the economic KPIs and to continuously fine-tune 
production target and operation settings. 

5. Conclusions 

This study has evaluated the economic performance of an innovative 
GAME-based process for recovering precious metals from e-waste. To 
conduct economic analysis, a TEA model was implemented with the aid 
of a software tool. With the goal of achieving economies of scale, 
sensitivity analysis and statistical learning were applied to search for 
cost-effective industrial production scales. The results indicated a 
promising economic prospect of the GAME-based process, which may 
incentivize investments and facilitate its industrial deployment. The 
most significant intellectual contribution of this work is a two-phase 
analytical paradigm that integrates conventional cost-benefit models 
with other advanced analytical approaches. The proposed two-phase 
economic analysis methodology, accompanied by the software tool, 
can be further adopted in analyzing the economic feasibilities for a 
broader range of nascent technologies, especially in the fields of sus
tainable management and resource conservation. In future efforts, the 
GAME-based process can be adapted to the recycling of other high-value 
extractable materials (such as cobalt, vanadium, and rare earths) from 
complex waste streams. To support decision making, the two-phase 
economic analysis methodology can be employed to identify system 
bottlenecks and explore improvement strategies. 
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Table 5 
Comparison of selected KPIs among the baseline and improved scenarios.  

KPI Baseline Minimal AVC Minimal ATC 

WPCB processed (X) X0 = 25 mt/ 
year 

X1 = 105 mt/ 
year 

X2 = 165 mt/ 
year 

OPEX $361,061/year $1,303,539/ 
year 

$2,048,712/ 
year 

CAPEX $345,130 $1299,023 $2002,031 
Average variable cost 

(AVC) 
$27.0/kg $23.4/kg $23.5/kg 

Average total cost 
(ATC) 

$49.2/kg $42.4/kg $42.3/kg 

Unit revenue $83.4/kg $83.4/kg $83.4/kg 
Annual profit (P) $235,886/year $1,223,205/ 

year 
$1,926,994/ 
year 

Break-even point (BEP) 11.4 mt/year 38.7 mt/year 60.5 mt/year 
Net present value (NPV) $1,654,094 $8,523,206 $13,419,558 
Payback period 2 years 2 years 2 years 
Internal rate of return 

(IRR) 
88.8% 114.9% 116.8%  

Fig. 6. The optimal cubic splines for average costs.  
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